
Moving into Design

Analysis versus Design
Logical versus Physical Design
System versus Detailed Design
Characteristics of Good Design

Tradeoffs in Design



Analysis versus Design (1)

Analysis
What happens in the current 
system?
What is required in the new 
system?
Seeking understanding, 
investigating requirements 
and modelling requirements
Focus: the way the business 
is organised and a possible 
better organisation

Design
Produce the best 
possible solution that 
satisfies the 
requirements
How the system will be 
constructed without 
actually building it
Focus: implementation 
of the new system



Analysis versus Design (2)

Design as a stage or an activity
Lifecycle models: waterfall versus iterative
Unified process

Phases: inception, elaboration, construction, transition
Each phase requires one or more iterations
Each phase requires a number of activities
Activity effort lifecycle: first increase, then decline

Progress metric: over time the less analysis activity 
and more design activity



Analysis versus Design (3)

Traditional Lifecycle
A clear break between 
analysis and design

Advantages
Project Management
Staff skills and experience
Client decisions
Choice of development 
environment

Iterative Lifecycle
Both activities overlap

Advantages
Risk mitigation
Change management
Team learning
Improved quality



Analysis versus Design (3)

Traditional Lifecycle
A clear break between 
analysis and design

Advantages
Project Management
Staff skills and experience
Client decisions
Choice of development 
environment

Iterative Lifecycle
Both activities overlap

Advantages
Risk mitigation
Change management
Team learning
Improved quality

Very important: in both cases the requirements are explored fully!



Analysis versus Design (4)

Why should we consider the separation?
Traditional methods enforce separation!

Dataflow versus structure diagrams

Object oriented methods enforce seamlessness!
Object models
Same diagrams with added detail
The analysis – design continuum: from “what to do” 
to “exactly how to do it”



Logical versus Physical Design 
(1)

Implementation platform independent versus 
implementation platform dependent design

Switch: when a decision about the implementation 
platform (hardware and software) is taken
Examples

Distributed platform requires middleware
Object oriented language and relational database requires object
to relation mapping – ODBC
Choice of programming language limits the choice in GUI 
libraries, or particular language features used (e.g. multiple 
inheritance), etc.



Logical versus Physical Design 
(2)

Examples of platform independent design
Designing how the interaction that implements a 
particular use case will take place
Designing the layout of data entry screens and 
the objects that are required to process them

The main advantage of separating logical and 
physical design is design reuse in multiple 
platforms



System versus Detailed Design 
(1) 

System design is concerned with the overall 
architecture of the system and the setting of 
standards

Organisation of the system into sub-systems, 
organisation of the communication between sub-systems

Distribution and concurrency?
Standards – conventions to be followed throughout

Job design

Detailed design is concerned with the designing 
individual component that fit the architecture and 
conform to the standards



System versus Detailed Design 
(2)

Traditional detailed design
Designing input, output, processes and files
Easy to develop and maintain modules: cohesion and coupling

High Cohesion: design modules that carry out a clearly defined 
process or groups of processes that are functionally related
All elements of a module contribute to the performance of a single 
function
Bad cohesion: coincidental, logical, temporal and sequential
Low Coupling: design modules that perform their function using 
only the data that is passed to them and using the minimum 
necessary amount of data
Modules are independent of one another and amendments in one do 
not have knock on effects on others
Poor coupling: use of global variables, large amounts of data passed 
in parameters, control information passed as parameters



System versus Detailed Design 
(3)

Good Systems comprise of encapsulated modules exhibiting high 
cohesion and low coupling

In object-oriented systems the same applies to classes!
Object-oriented detailed design

Entity classes in analysis, boundary and control classes in detailed 
design

Boundary to the database!
Human interface, data management and task management 
components
Presentation, application logic and storage layers

Reuse and assignment of responsibilities
Design reuse: design patterns and previously developed business 
classes (software components)
Code reuse: encapsulation and inheritance



System versus Detailed Design 
(4)

Where should we put the responsibility 
for tax calculation?



Characteristics of Good Design 
(1)

Good design requires good analysis
Fixing faults later in the lifecycle is more costly
Criteria for good analysis

Correct scope
Not this time component
Scope creep in traditional and iterative lifecycles?

Completeness
Analyst experience, analysis patterns!
Non-functional requirements, design requirements

Correct content
Accuracy should not be confused with precision!

Consistency
Consistency between diagrams



Characteristics of Good Design 
(2)

Errors in scope and completeness ⇒ a system that does 
not do what it is supposed to
Errors in correctness and consistency ⇒ a systems that 
performs incorrectly and problems for the designers

Good system design objectives
Functional, Efficient, Economical (development and 
running costs), Reliable (software and hardware errors, 
integrity maintenance, testing and dependencies), Secure 
(legislation), Flexible (modifiability), General 
(portability), Buildable (design clarity, language 
features), Manageable, Maintainable (quality of design 
documentation), Usable (affordance, productivity),  
Reusable (economies and development culture)



Characteristics of Good Design 
(3)

Design objectives tend to conflict with one another
Many conflicts result from the non-functional 
requirements
Constraints increase conflicts (e.g. budget, timescale, 
integrate existing hardware)
Need for compromises or tradeoffs in design
Documentation of rational is crucial!

Measurable design objectives
Expected benefits from cost-benefit analysis!



Planning for Design

When will the architecture and the system standards be set?
When will the development platform be fixed?

How will issues regarding the team expertise on the platform will be 
addressed?

What are the objectives against which the design should be 
tested?

What are the testing procedures to be followed?
How are conflicts resolved?

What are the procedures for agreeing and documenting tradeoffs?
How much time should be spent on each aspect of the 
system (i.e.user interface, data management, etc)?


